Autonomens Robots 6, 247-264 (1999)

[V |
Ev © 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

Component Specifications for Robetics Integration

E. MESSINA, I. HORST, T. KRAMER, H. HUANG AND J. MICHALOSKI
National Institute of Standards and Technology, Gaithersburg, MDY 20899

Abstract. Robotics researchers have been unable to capitalize easily on existing software components to speed
up their development efforts and maximize their system’s capabilities. A component-based approach for building
the software for robotics systems can provide reuse and sharing abilities to the research community. The software
engineering community has been studying reuse techniques for three decades. We present several results from
those efforts that are applicable to the robotics software integration problem. We describe how to specify a software
component so that a potential user may understand its capabilities and facilitate its application to his or her system.
At the National Institute of Standards and Technology, we have developed a three-stage, component-specification
approach. We illustrate this approach for a component that is relevant to robotics.

Keywords: software components, software reuse, frameworks, intelligent systems, software architectures

1. Raobotic Research and Software Reuse:
Two Parallel Efforts

Robotics research has long been at an impasse: unless
appropriate technologies emerge, ineffective and inef-
ficient sharing of software will continue to impede the
goal of truly intelligent, robust, robotic systern behav-
ior. This paper discusses the use of component speci-
fications to achieve sharing and integration of robotic
software modules. We begin by providing background
on component specification and reuse activities in the
general software engineering community. A brief dis-
cussion of some efforts in the robotics domain that
are relevant to component-based development follows.
Finally, an approach to component specifications de-
veloped and applied at the National Institute of Stan-
dards and Technology provides a concrete instance.
Software reuse—using existing software artifacts dur-
ing the construction of a new system—has long
been a goal of the software engineering community
(Nauer and Randel, 1968). Numerous efforts have been

Certain commercial products or company names are identified in
this paper to describe our study adequately. Such identification is not
intended to imply recommendation or endorsement by the National
Institute of Standards and Technology, nor is it intended to imply that
the products or names identified are necessarily the best available for
the purpose.

underway in academia and industry that address the
challenges of creating software components so that
they are suitable for reuse. Research issues include
specification, implementation, retrieval, and assembly
of components. The robotics research community may
leverage certain aspects of these efforts in order to
communicate their particular requirements and the
functionality of those components. A common under-
standing of the application domain, vocabulary, and
architectures (Chen and Cheng, 1997) contributes to a
concrete framework benefiting reuse. Krueger (1992)
states that the few success stories in reuse occur in sim-
ilar environments having a common, domain-specific
frame of reference. Being able to leverage existing
software components would reduce development ef-
forts for researchers. Instead of having to write all
of the software for its robot testbed, a research team
could concentrate on the software that is unique to
their area of interest. Furthermore, building systems
using proven “best of class” components developed
elsewhere should lead to more capable robotic imple-
mentations overall.

A main research area for software reuse has been
component specification. Despite the progress made
in this area, there are several important obstacles to
the application of these results and approaches di-
rectly to the integration of robotic research: the bulk

248 Messina et al.

of the commercial efforts in specifications for reuse
have been targeted towards business software develop-
ment, which addresses a different set of requirements
than does development of real-time software that inter-
acts with and controls hardware components. Several
of the current efforts rely on fairly constrained defini-
tions of envirenments in which reuse is possible. They
assume that the reuse will occur within a particular de-
velopment environment (Kara, 1997). Tt is not realistic
to assume that robotics research institutions will aban-
don their current development environments in favor
of a standardized one, even if that would provide reuse
possibilities.

At the National Institute of Standards and Tech-
nology, we have been developing the specifications
of software components for intelligent control, a
domain that includes robotics. We define intelligent
control as the capability for a complex system to
successfully perform complex physical tasks in the
presence of uncertainty and unpredictability. In con-
sidering the component-based approach to software de-
sign and development, we initially found inspiration
in the design paradigm prevalent for certain hardware
domains. In hardware design, a high-level functional
decomposition is generated, along with requirement
specifications for individual components. Designers
use hardware caralogs to locate candidate components
that match their specifications. In certain hardware do-
mains, such as printed circuit board design, integrated
design and simulation tools allow the designer to evalu-
ate the overall system performance using the candidate
chips. Specifications that define the characteristics and
behavior of a chip exist in languages such as the Very
High Speed Integrated Circuits Hardware Descrip-
tion Language (VHDL) (IEEE, 1994). Eventually, we
expect to see an analogous capability emerge for soft-
ware, allowing designers to locate available com-
ponents that match their criteria and evaluate their
performance through simulation that is derived from
the specification itself. In the nearer term, we seek
to enable software designers to browse catalogs of
available components that are described in a mean-
ingful way. Our approach is unique in that it takes
a multi-stage view of software component specifica-
tions. There are three potential levels of specification
for a software component:

— a specification template which identifies relevant
aspects for a component;

— specific, natural language text instantiations that fill
in the categories in the generic class;

— formal versions of the specific instantiations.

Much of the literature on component specification
and reuse is targeted towards domain-specific algo-
rithms that are not based on engineering, scientific,
or real-time applications. We were interested in eval-
uating the issues in specifying components in those
domains where potential users of a component often
want to compare their system requirements with se-
mantic characteristics of multiple competing compo-
nents. For example, a user may need to know whether
an algorithm will not converge given certain input con-
ditions. Furthermore, the target-system’s performance
characteristics are often not fully known, so that testing
and simulation are especially critical in the context of
a prototype system.

We began our research by identifying a class of algo-
rithms that would lend themselves to reuse in industrial
or research settings, developing specifications for that
class of algorithms, and studying how to represent the
specifications so that they can be used in several ways.
To illustrate the general concepts about software com-
ponents that are presented, we include a description of
our results thus far in generating and validating com-
ponent specifications for a class of control software
components.

2. Background and Relevant Efforts
2.1. Academic Work

There are many definitions of the term “component”.
‘When the inner workings of a component are not open
for inspection, it is generally referred to as a black
box component (Short, 1997; Szyperski, 1998). Con-
versely, a white box compenent’s insides (typically
source code) are available for customization, extension,
or other modification. We shall use the term component
to mean a unit of software with clearly defined interface
and functionality. This definition allows components
to be white box, but does not require it. The majority
of component-based software research is attempting to
address the reuse challenge. In order to facilitate suc-
cessful reuse, an abstraction process must take place
that reduces the level of details that are unimportant
to the system developer (Krueger, 1992). The creation
of meaningful summaries of component behavior in
the form of component specifications is just such an
abstraction process.

There are three main areas of characterization
required to define a software component: its static
aspects, its dynamic characteristics, and its semantic
content. Most descriptions of software components for

reuse define the signature of a piece of software. The
signature primarily describes the static aspects of code,
such as the call interface, data flows, and operating sys-
tem requirements. Several efforts have been aimed
at detailing the dynamic aspects of a piece of soft-
ware, that s, its run-time characteristics. For example,
the C++ Standard Template Library includes execution
time bounds in the specification of functions (Musser
and Saini, 1996). Another approach using run-time
information is based on historical traces. Histories of
permissible state transitions have been used as part of a
component’s specifications (Liskov and Wing, 1993).
Capturing the semantic aspects, i.e., the real meaning
and function of a piece of software, poses the most
challenges. A semantic description of a component
is a form of information abstraction. Krueger (1992)
refers to the process of abstraction as an attempt to re-
duce the cognitive distance, which he defines as “the
amount of intellectual effort that must be expended by
software developers in order to take a software system
from one stage of development to another.” Therefore,
the challenge is not only to capture the semantics of a
component, but also to do so at an appropriate level or
levels of abstraction. Carefully chosen and appropri-
ately utilized component specifications can meet such
a challenge.

Several component specification approaches attempt
to create a language or taxonomy for describing compo-
nents such that they can be matched with descriptions of
required functionality or features. Zaremski and Wing
(1996) define specification matching as the “process of
determining if two software components are related.”
Specification matching can facilitate retrieval based on
syntax and semantics, adaptation for reuse, and sub-
stitution of one component for another. Kazman et al.
(1997) describe the use of architectural elements for
classification matching. They categorize the run-time
characteristics (such as, times of control acceptance,
times of data acceptance, and state retention) and the
static features (such as, whether the data and control
scopes are virtual or physical and whether the compo-
nent binds at invocation or execution) of a component
and match those against specified criteria. The full se-
mantic description of a component can be challenging
to produce, especially if trying to understand a piece of
software written by someone else. This has led to at-
tempts to extract component specifications from code
automatically or semi-automatically. Approaches vary
widely. For example, Basili and Abd-El-Hafiz (1992)
describe the Computer Aided Reuse Engineering Func-
tional Specification Qualifier, which is a knowledge

Component Specifications for Robotics Integration 249

based approach that finds the abstract specifications
of a program’s loops and produces specifications in a
first order predicate language. Podgurski and Pierce
{1993) retrieve software components by modeling the
inputs and desired outputs and statistically exercising
a set of candidates with random inputs to find the
ones whose outputs most closely match the desired
ones.

Component specifications may, in some cases, be
more readily derived by taking a domain-specific ap-
proach (Batory and O'Malley, 1992; Demeyer et al.,
1997; Nierstrasz et al., 1992; Nierstrasz and Meijler,
1995). The universe of possible options and the prob-
lems addressed is bounded within domain-specific ap-
proaches. Domain-specific component reuse is related
to framework reuse. A framework is a collection of
components with defined relationships between them
(Pree, 1997). Frameworks may be designed to have
designated components that are replaceable or cus-
tomizable. Some of the literature refers to these des-
ignated variable components as hot spots (Pree, 1997)
or axes of variability (Demeyer et al., 1997).

We briefly describe some examples that are espe-
cially relevant to robotics researchers. The Reconfig-
urable Modular Manipulator System (RMMS) (Paredis
et al,, 1997; Stewart et al., 1997) at Carnegic Mellon
University provides an environment that supports as-
sembly of robotic manipulators through the use of hard-
ware and software building blocks. The system is a
framework of port-based objects (PBOs) built upon a
custom real-time operating system. PBOs are based
on the port-automaton theory (Steenstrup et al,, 1983).
The PBOs are independent processes that communi-
cate with other PBOs via input and output ports, They
interact with sensors and actuators via resource ports.
Configuration constants are used to tailor generic com-
ponents for specific hardware or applications. PBOs
are not defined semantically in a formal manner. A text
configuration file describes a port-based object. The
coniiguration file contains the module name, its natural
language description, names of input and output vari-
ables (ports), input and output configuration constants,
whether the task is periodic or aperiodic, and process
execution frequency. Module-specific local configura-
tion parameters, such as gains, may also be included
in the configuration file. Selecting PBOs and connect-
ing their corresponding inputs and outputs configures
a system. A graphical tool is available to support soft-
ware composition using PBOs. There does not appear
to be a means of retrieving components matching par-
ticular specifications.

250 Messina et al.

Another example from the robotics domain is the
Interactive Benchmark for Planning Algorithms on
the Web (Piccinocchi et al.,, 1997). This web-based
environment provides users the ability to compare
path planning algorithms for car-like vehicles. Using
a client-server model, users can exercise several plan-
ning algorithms already implemented within the en-
vironment by either using available problem sets, or
defining their own. A problem is posed by selecting
one of five vehicles, defining polygonal obstacles and
start and goal positions for the vehicle. The solution
is presented graphically as the path found, along with
data such as path length and execution time. Users can
connect their own planners to the environment. This as-
pect requires a component specification for the planner
algorithm, The overall environment can be considered
a domain-specific framework providing an infrastruc-
ture (HTML (Berners-Lee and Connolly, 1993), CGI
scripts (McCool, 1994), and TCP/IP (Postel, 1981)) for
one variable component. Because the environment is
tailored for a very restricted domain, the specification
for the planner component describes simple text data
input and output files. The input file lists the number of
obstacles and a sequence of vertices for each obstacle.
The output file contains a path defined by a sequence of
linear, circular, or elliptical segments. There is no ex-
plicit semantic representation used in this testbed and
no performance data are included.

2.2. Specifications in Industry

Commercial efforts have become much more visi-
ble and viable in the past few years. In the book by
Szyperski (1998), the focus is on reusable assets
and typically refers to blackbox reuse. His defini-
tion of components is “binary units of independent
production, acquisition, and deployment that inter-
act to form a functioning system.” Most of the lead-
ing efforts, such as Microsoft (COM, OLE, Ac-
tiveX, COM+) (Brockschmidt, 1995; Chappell, 1956;
Denning, 1997}, Sun Microsystems (Java, Java Beans)
(JavaSoft, 1998), and Object Management Group
(OMA, CORBA) (OMG, 1996, 1997), are at the
“wiring” level. They concentrate on the communica-
tion infrastructure and gluing together of components
{(Pree, 1997, Szyperski, 1998).

Component specifications are of increasing impor-
tance to the manufacturing industry as it is in the midst
of a major shift in technology from closed, proprietary
systems Lo the era of open, plug-and-play systems.

The leading plug-and-play standardization efforts all
define an open-architecture and component interface
specification, but differ in their approaches. The Open
System Environment for Controller (OSEC) working
group, founded by six Japanese companies, defines
the Factory Automation Equipment Description Lan-
guage (FADL) based on the PERL object-oriented pro-
gramming language (SML Corporaticn, 1998). With
a more powerful programming language like FADL,
reusability would result from standardized libraries
available for common applications. The Open System
Architecture for Controls within Automation Systems
(OSACA) started as a joint European project in May
1992 but has broadened the scope to define a world-
wide, vendor-neutral system architecture containing
a communication specification, a reference architec-
ture and a configuration specification (OSACA, 1998).
Reusability is based on conformance to the reference
architecture, which describes external interfaces for a
set of standard modules. The Open Modular Archi-
tecture Controller (OMAC) (Bailo et al., 1994) Ap-
plication Programming Interface (API) (OMAC API
Workgroup, 1997) workgroup has developed an object-
oriented framework that includes a control class hierar-
chy, plug-and-play modules aggregated from the class
hierarchy, and a model of coliaboration. Reusability
is based on the framework model (Fayad and Schmidt,
1997,

3. Software Specifications for Intelligent
Control Components

We have been researching methods to design software
component specifications that are standardizable and
comprehensive and would provide the basis for com-
ponent repositories usable for intelligent control. Our
research seeks to improve the efficiency of commu-
nicating a new algorithm’s capabilities and character-
istics, so that potential users can evaluate it. We use
the terms algorithm and component interchangeably in
this section since the focus of our work is to facilitate
distribution and leveraging of algerithms, not necessa-
rily the comparison of different implementations of the
same algorithm. Since the information is crucial to the
design of a system, some of the specification categories
do require data about the algorithm as implemented in
a component.

The research described herein targets a particular set
of aspects pertinent to component specifications. The
domain is focused on intelligent control. The scope

of the specification categories goes beyond just
the “wiring” and signature aspects of a component. We
include semantics and certain implementation charac-
teristics so as to allow system developers to effectively
communicate and comprehend a component’s capabi-
lities and applicability to their system. We are inves-
tigating methods to use specifications in design and
simulation tools during the system design process.

Taking a domain-specific approach to component
analysis, we fargeted a particular family of algorithms
relevant to intelligent contrel, namely pose estimation.
This enabled us to extract the significant semantic in-
formation without having to be exceedingly broad. We
have taken a three-part approach to component speci-
fication. Initially, generic specification categories to
be filled in for each algorithm are defined. The generic
categories are a template to be used to define the op-
eration and performance of a particular component in
the class. Secondly, for a particular algorithm or com-
ponent, the developer fills in each slot in the template.
This creates the particular, instantiated specification
in a natural language format. The final step in spec-
ification is to convert the natural language descrip-
tions into a formal language. The multi-stage develop-
ment of specifications within a domain-specific context
provides a robust approach to component definition.

There are several advantages to considering the for-
mal representation of an algorithm. Formal languages
provide an unambiguous specification of information
about the component. They also hold the potential for
supperting simulation of the component’s execution
to verify how it will fit into the overall system being
assembled. Ultimately, if automated component re-
trieval, matching, and composition is desired, some
form of formal language will be required. Formal
methods have not been widely deployed outside of
specialized areas due to the lack of familiarity with
the notations and the difficulties of using them (Baresi
et al., 1997). Nevertheless, we believe that their ad-
vantages outweigh the challenges of adopting them.
Furthermore, we anticipate that, in the long run, tools
will be able to extract the formal expressions, translate
between representations, and utilize them without ex-
posing the developers or users of the components to the
formal representations.

The algorithm class that we have focussed our re-
search on performs position and orientation estimation
for a physical object using visual sensing {also referred
to as “part pose estimation’™}. This is a class for which
several algorithms have been published, enabling us

Component Specifications for Robotics Integration 251

to examine the breadth of specification categories
applicable to these components. This class provides
a sufficiently rich problem set, involving several as-
pects that are relevant to developers of controllers for
robotics and other advanced automation applications.
Key elements include sensory inputs, mathematical
computation, access to an external database (such as
a Computer-Aided Design model of the part), spatial
reasoning, and a range of algorithm options, such as
pose matching two-dimensional information against
two-dimensional or three-dimensional data. Available
resources in-house enabled us to validate the specifica-
tions through implementations.

We validated the specifications for a component
within an inspection system that was implemented
based on the NIST Real-Time Control System (RCS)
architecture (Albus, 1996, 1997). The RCS architec-
ture has been used in development of several robotic
applications (see Herman and Albus, 1988; Murphy
et al., 1988, 1993; Stouffer and Russell, 1993 as ex-
amples). Although the particular testbed for which
the part pose estimation component was developed is
not strictly speaking a robotic one, the problem being
solved is very compatible with the type encountered by
robot developers. Essentially, the system has to extract
information about its environment through the use of
sensors and update an internal model of the world us-
ing a priori knowledge in order to generate a plan of
action that reflects its goals and the state of the environ-
ment. The images captured from the cameras inform
the system about its environment. The system has a goal
to inspect a part’s dimensions. Dimensional inspection
involves measuring the relative geometry of surface
features and determining whether they are within tol-
erance. Examples of feature geometry evaluated in-
clude shapes of smooth surfaces, distances between
edges, positions of holes, and diameters and shapes of
holes. The system has a priori knowledge or expec-
tations about the datum geometry of the part and its
location. Comparing the expected world model with
the sensed world model, the system alters its inspec-
tion plan based on the actual position of the part.

The inspection system testbed provides an RCS-
based framework with the part pose estimation sub-
system designated as a hot spot. From a framework
perspective (Huang, 1996), RCS prescribes a multi-
dimensional decomposition of a system, built upon
generic controller nodes. The nodes are assigned spe-
cific responsibilities at different levels of abstraction
determined by their functionality in one axis, and

252 Messina et al.

Inspection Workcell

Inspecticn Workstation

Fixturing Maasurament Vision
{racognition, locaiization]

Probe Changing Coordinata
Mzasuring Machine

Proba CMM
Axes

Figure 1. RCS hierarchy for an inspection testbed.

their response time in another. The varying levels of
abstraction help reduce the cognitive distance for en-
gineers during the design process. This allows them to
focus on one level of abstraction at a time and on the
relevant variables and parameters for that level only.
Communication pathways and component responsibi-
lities within the hierarchy and between nodes are de-
fined within the RCS framework. All controller nodes
contain behavior generation (BG), sensory perception
(SP), value judgement (VJ), and world modeling (WM)
functionality. The part pose estimation component cor-
responds to sensory processing and world modeling
functions within the Vision node in the simplified hi-
erarchy diagram in Fig. 1.

3.1, Step 1: Generic Categories
Jor the Specifications

The generic categories for component semantics that
were defined can be thought of as a set of questions
that a potential user of the component may ask its de-
veloper in order to ascertain whether the component
is appropriate for use in a new system. The questions
should address the static, dynamic, and semantic as-
pects of the software component. The categories that
were selected to describe the part pose estimation com-
ponent are listed below.

Problem Definition: What problem is this component

intended to solve? What are the potential and known
application areas for this component? For each ap-
plication area, give a set of competing components
with references.

Input Data: What is the input data to the component?

What input data sets were used in the testing? What
are the dimensional units of the input data? What
is the format of the input data? Are the represen-
tations chosen for the input data consistent with
the expected or typical upstream components? What
are the input parameters required (if any) and how
do they affect the operation and performance of the
component? Input parameters are the design values
(typically static) that affect the operation of the algo-
rithm, whereas input data values are the input from
the world, e.g., a sensor, that are to be transformed
in some way. Are there any input parameters that
allow the user to specify the type and/or format of
the output?

Output Data: What are the outputs of the component?

What is the format of the output data? How are the
various formats for the output data specified? For
instance, if the output data is contained in files, what
are the file formats? Are the representations chosen
for the output data consistent with the expected or
typical downstream components?

Transfer and Feedback Relations: How do the in-

puts relate to the outputs, i.e., what are the transfer
and the feedback relations? If one can describe these
relations analytically, describe these equations, e.g.,
are they linear or non-linear, and state these equa-
tions, e.g., define meanings of variables and write
out all relations. Under what conditions are the equa-
tions over-determined or under-determined?

Input Data Constraints: What are the constraints on

the format and nature of the input? There may be
constraints on the nature of the input beyond what
is inherent in the nature of the component. For ex-
ample, the number of elements in an array might be
constrained to be even, or the difference between in-
put numbers might be constrained to be greater than
some value, or the number of input values might be
constrained to be in some range.

Environmental Constraints: ‘Environment’ means

factors external to the computing system and its data
which affect the performance of the component. If
the task of the component is to examine or manipu-
late physical objects, what are the constraints on the
format and nature of those objects? For instance,

what are the rigidity, size, shape, color, surface fin-
ish, or illumination conditions? If there is a sensing
device, what are the constraints on the type and use
of the sensing (e.g., structured light, CCD camera,
range camera)? Does the object need to be placed
in some approximate pose? Are there special con-
figurations of the environment that might cause the
component to fail?

Knowledge Data Constraints: What are the con-
straints on the format and nature of the knowledge
data? For example, can a CAD drawing in some stan-
dard format be used for matching sensed features to
model features?

Computing Constraint: What, if any, are the operat-
ing system requirements of the component? In what
computer language is the source code written? Is the
source code available? Are there any system archi-
tecture requirements for using the component? What
kind of computing hardware is required by the com-
ponent? How much RAM memory and disk space is
needed? Are there any constraints on the numerical
precision of the processing system?

Internat Data Representation: If there is some
knowledge (i.e., not input/output data) that is ex-
plicitly represented within the component, what is
the format of the representation?

Speed: Based on actual examples run on specific com-
puters, how fast does the component run? What is
the execution time of each of the subcomponents of
the component? If speed depends on the size or type
of input data, give the speed of execution for a fixed
and standard size or type of input.

Complexity: What are the relations defining compu-
tational complexity of the component (there may be
more than one such relation) as functions of the in-
put variables? Complexity relates closely to speed.
But an analysis of complexity typically does not deal
with the initial fixed cost of the component or with
the size of the constants by which various terms
of the complexity must be multiplied. What assump-
tions are made in the complexity analysis?

Benchmarks: If there is a standard test suite (a set of

benchmarks) for components performing the same
task, what are the benchmarks and how does the
component perform against them? Are there opti-
mal components that can produce the ideal output?
How is optimality defined for each component? Are
there other measures of performance, e.g., statistical
measures? If so, how does the component perform
based on these measures?

Component Specifications for Robotics Integration 253

Robustness: How robust is the component, i.e., how

does the component perform in the presence of large
perturbations on a subset of its data values? Such
perturbations have been called replacement noise,
e.g., when object recognition is the task and featre
recognition is a subtask and a feature of Type A is
thought to be of Type B by the algorithim. Replace-
ment noise is usually large on a small subset of the
data and probabilistic noise is small on a large sub-
set of the data. How does the component perform as
replacement noise varies throughout its range, e.g.,
does performance degrade smoothly or catastrophi-
cally? Several aspects of this type of noise can vary,
for instance, the size and type of the perturbations
and the size of the subset of all data values affected.
Is the component able to perform well {or at all) if
the input is outside of the specified region? State
all models that exist for replacement noise. For in-
stance, what is the mode! for the ‘ideal’ world? What
is the model for large perturbations (e.g., mismatch)
on this ideal world? What is the criterion function
for measuring the difference between noisy output
and ideal output (Haralick et al., 1989)?

Noise: How does the component perform in the pres-

ence of small perturbations, i.e., probabilistic noise,
on all data values? How does the component perform
as this type of noise varies throughout its range, e.g.,
does performance degrade smoothly or catastrophi-
cally? Several aspects of this type of noise can vary.
For instance, both the size and type of the pertur-
bations can vary. State all models that exist for this
type of noise. For instance, what is the model for
the ‘ideal” world, what is the model for small pertur-
bations on this ideal world, and what is the criterion
function for measuring the difference between noisy
output and ideal output (Haralick et al., 1989)?

Convergence: Is the component iterative or closed

form? If iterative, under what (if any) conditions
is convergence guaranteed? Does the component
converge to the global solution?

Errors: What is the error criterion, e.g., least squares?

What kinds of input errors and/or internal errors does
the component detect? What does it do if such errors
are detected? Are there error recovery procedures?

Reliability: If the algorithm is available as source

code, a library, or embedded in a system, how re-
liable is it? How reliable is the component? Are
there any known bugs? What reliability tests has
the component passed, such as the checking pro-
vided by commercially available reliability tools,

254 Messina et al.

or a theoretical correctness proof? Example entities
checked by such tools are uninitialized local vari-
ables, uninitialized malioc’d memory, using f{reed
memory, overwriting array bounds, over-reading ar-
ray bounds, memory leaks, file descriptor leaks,
stack overflow errors, and stack frame boundary er-
rors. Has there been testing by some sort of coverage
test tool, which keeps track of which code is executed
in a given session? Coverage tools give a sense of
how much of the code was exercised by other reli-
ability tests. The granularity can be at the function,
block, or line level. A coverage tool will give the po-
tential user greater confidence in a software compo-
nent’s reliability if it had been covered 100% during
testing and errors were cleaned out of it.

Testing and Analysis: What experiments have been
done with the component? If input data was var-
ied over a set of variables, what criteria were chosen
1o sample the space of variables in order to generate
sample input data? Was Monte Carlo testing done?
Are there simulators available that generate input
data? What kinds of analysis have been done on the
results? What kinds of graphs and tables have been
produced and what is their format? What statistical
methods have been used?

Application Experience: How widely has the algo-
rithm or component been used? What is the reported
experience? What are the potential application ar-
eas for this algorithm and, for each application area,
give a set of competing algorithms with references?

Upstream and Downstream Requirements: What
kinds of components or algorithms are typically ex-
ecuted prior to or subsequent to this algorithm? Are
the representations chosen for the input and output
data consistent with the expected or typical upstream
and downstream components? Does anything in the
component constrain the upstream or downstream
components that must be used? The types of up-
stream and downstream components may depend on
the particular area to which the component is applied.

Parallelizability: Can the component be parallelized?
Has it been? How does parallelizing affect perfor-
mance?

Modularizability: Can subcomponents of the compo-
nent be modularized? Have they been? How might
modularization affect component performance?

Nature of Interaction: How is the component used?
Can it be used by function call, or is the component
part of a system that runs in client-server mode, or
some other more complicated mode?

Coding Style: How is the code written, e.g., in func-
tional, procedural, recursive, or object-cricnted
style?

Compliance to Standards: Which (if any) standards
(published or de facto) are used and complied with?

3.2, Step 2: Natural Language Instantiation
of the Specification

Given a template to fill in for a particular algorithm
class, the developer can fill out all the slots with avail-
able information. It is possible that not all of the
data will be known or be applicable. The natural lan-
guage description of the algorithm, generated using
the generic template as a guide, can be used directly to
communicate a component’s capabilities, limitations,
and requirements. If component natural language de-
scriptions are made publicly available in text or other
format, readily available tools can be applied to locate
and assess the components. A search engine can be
used to locate candidate components based on certain
keywords. Potential users can also browse through the
descriptions as they would through a hardware compo-
nents catalog.

The above component template was filled in for
published algorithms as well as for an in-house de-
veloped algorithm. We include the instantiation for a
part pose algorithm (Tan et al., 1992, 1994, 1996) to
illustrate what the natural language specifications look
like. The algorithm computes an estimate of the po-
sition and orientation (pose) of any object where the
inputs to the algorithm are the matched model and
sensed feature pairs. The algorithm consists of non-
iterative, closed form expressions, which is rare for
3D pose estimation algorithms. This is accomplished
by assuming that the ground plane on which the object
lies is known, which is a common assumption for many
applications.

Problem Definition: What problem is this component
intended to solve? This component computes the lo-
cation and orientation of alaminar part. What are the
potential application areas for this algorithm and, for
each application area, give a set of competing algo-
rithms with references? Pose estimation of automo-
biles on roads of known orientation and rigid objects
on flat surfaces of known orientation. Some compet-
ing algorithms are (Dementhon and Davis, 1995;
Haralick, 1992; Huttenlocher and Ullman, 1990}.

Input Data: What is the input data to the algorithm?

An array of N vectors of the following nine
real numbers (doubles) for each i=1,2,.... N,
(a;, b;, ¢, x?, yf), z?, o, Bi,), where N is the
number of lines in the image that corresponds to lines
in the model, (a;, b;, ¢;) is the unit vector of param-
eters that solves the equation, g;u + b;v +¢; =0 for
all on the ith measured linc in the image, (x?, y?, z7)
is the position vector of the initial point of the corre-
sponding model line segment in model coordinates,
and (o, i, ;) is the unit directional vector of the
same model line segment also in the model coor-
dinates. Also required for input are the parameters
for perspective transformation (t, ., t;, 8, &, £, f),
where (. 1,,t;), is the vector of translation from
the origin of the machine coordinate system to the
center of the camera lens, (8. ¢,) is the vector spec-
ifying the roll, pitch, and yaw of the camera in ra-
dians (vaw is a counter-clockwise spin around the
z-axis, pitch is a counter-clockwise spin around the
x-axis, and roll is a counter-clockwise spin around
the y-axis), and f is the camera focal length. What
input data sets were used in the testing? Tan has
models of automobiles. The authors have a slightly
modified cube for testing which is defined in Math-
ematica. What are the dimensional units of the input
data? (a;, b;, ¢;) are dimensionless, (x”, y?, 2%) are
in meters, and (e;, B;, ;) are in radians. (z,, . t;)
are in meters, (3, &, ¢) are in radians, and f is in
meters.

What is the format of the input data? All input
arrays are arrays of doubles. Are the representa-
tions chosen for the input data consistent with the
expected or typical upstream algorithms? The ex-
pected upstream algorithm is an algorithm matching
a sensed feature to a model feature and, since the
Tan algorithm requires input lines to maich edges
on a planar polygonal object, the matching algo-
rithm must produce line matches as well. How-
ever, if point or line segment matches are all that
are available from the matching algorithm, line para-
meters can easily be generated from them.

What are the input parameters required (if any)
and what meaning do they have for the operation
and performance of the algorithm? None required.
Are there any input parameters that aflow the user to
specify the type and/or format of the output? No.

Output Data: What are the outputs of the algotithm

and what is the format of the data? An array of

Component Specifications for Robotics Integration 255

four doubles, (x, y, 6, k), where (x, ¥, &) represent
the two dimensional position and orientation of the
part and k represents the scale of the part (in case
the part measured is a scaled version of the model).
The remaining three parameters, (z, &, W), required
to fully specify the three dimensional position and
orientation, are assumed to be known and equal to
zero a priori. How are the various formats for the
output data specified, for instance, if the output data
is contained in files, what are the file formais? An
ANSI C-compliant array.

What is the format of the output data? All output
arrays are arrays of doubles. Are the representa-
tions chosen for the output data consistent with the
expected or typical downstream algorithms? Yes.

Transfer and Feedback Relations: How do the in-

puts relate to the outputs, i.e., what are the transfer
and the feedback relations? If we can describe these
relations analytically, describe these equations, e.g.,
are they linear or non-linear. State these equations,
e.g., define meanings of variables and write out all
relations. This algorithm is open loop. The transfer
relationship is non-linear. Form the following ma-
trix, My, using the input data, (z,, bty 8,6, 0.),

M,; = (PTiR, T;)"

where
I 0 0 —
01 0 —
T, = .
0 0 1 —g
0 0 0 1
and
cos§ sing 0 ©
R —cosesing cosesing sing 0
T sinecos¢ —singcos¢ cosg 0
L 0 0 0 1
1 0 0 ©
010 -
T; = d
001 0
| 0 0 0 1

256 Messina et al.

and

-
Il
o - o

0
0
1
0

oo o -
- o o O

e

Define vectors, r; = (m;y, M2, My, M), i=1,2,
3.4, where my is the element at the ith row and
jth column of M,,;. Using the input values, (g;, b;,
c;,x,-o, y,-O,z?, o;, Bi,v;) for each i=1,2,..., N,
form the following scalar coefficients for each of
the N matching lines

A=&r +'r)-n

B = (xul'g =+ yol'l) n

C=r-n
D:[‘z-l‘l
E:z0r3-n

F= f{or; +8r;)-n
G = (ar; — fir))-n
H=yr;'n
J=-r;s-n

Using these coefficients, form the following matri-
ces,

F...F A ---Anv1T
A= 1 N 1 N] (1)
G,---Gy BBy

0.0 C--Cy 17

B=|0---0 Dy - Dy 2
0---0 —J - —Jy

A=[H,---Hy —E - —ExI" (3
Our desired output is (x, y, 6, k), so define

kK = % xX'=kKx and ¥y =Ky (@
and define

q, = (cosd,sind) and g =",y . k) (5

Define the following matrices

D=A’A — ATB(B’B)"'B7A = [a‘ az}
a3 da

h
h=A"C-A"BB'B)"'B’C = [h‘]
2

Define the following constants

¢y = 2ay + aq)
0 = (a; + ag)’ + 2a1a4 — a2a3) — (fl% — h3)
¢ = calaay — axaz} + 2hiha(az + as)
— 2arhi — ash3)
o = (@1as — @2a3)* — (Mas — haag)”
— (haay — hyag)’

Solve the following equation using these constants,
Maoil+eorl+ear+eg=0 (6)

and for each real solution, A, find q; and g, that solve
the following two equations:

q: = (BTB) 'BTC — (B"B)"'B7Aq
(D + i), =h

The optimal q, g is taken as the pair that minimizes
lAq, +Bg, — C|? (N

Under what conditions are the equations over-
determined or under-determined? Since a non-
linear, least squares technique is used, equations
should typically be overdetermined. In order for
the equations not to be under-determined, there
must be 3 or more non-degenerate line matches, i.e.,
N > 3. A line match is degenerate if (1) (a;, 8i)
=(0,0) (ie., the model line of a match is ver-
tical to the ground plane), (2) for i # j, (e:, Bi, vi)
= (x;, B;, v;) (ie., the model lines are parallel)
and (a;, by, ¢;) =(a;, by, ¢;) (the image lines are
collinear), or (3} if there is a single unique sclution
to the equation,

P+ itay, Binv) = pl 4+, B, v))

fori # jand p? =¢(x?, 2, z0) (i.e., the model lines
intersect), and (a;, b;, ¢;) = (a;, b;, ¢;) (i.e., the im-
age lines are collinear). How do the output values
vary with respect to the input, e.q., if it is non-linear,
describe the nature of the non-linearity? The pose
estimation depends on the solution of a fourth order
polynomial with at least four real solutions. If there
is increasing input noise and if the correct solution of
the four suddenly no longer produces the minimum,
the solution will switch to another set of the four
which may, in turn, cause the output pose estimation
to change suddenly in value.

Input Data Constraints: What are the constraints on
the format and nature of the input? There must be
three or more non-degenerate line maiches, ie.,
N > 2 (the degenerate case is already defined above).

Environmental Constraints: What are the con-

straints on the format and nature of the environment?
(1) The lighting must be good enough to avoid excess
specular reflection and shadows, since the algorithm
is not explicitly designed to handle replacement er-
rors, i.e., outliers. (2) Camera calibration must have
been performed a priori. (3) There must be no roll
in the camera. If there is a sensing device, what are
the constraints on the type and use of the sensing
{e.g., structured light, CCD camera, range camera)?
CCD camera placed with the object fully within the
field of view.

Knowledge Data Constraints: What are the con-
straints on the format and nature of the knowl-
edge data? (1) The pitch, roll, and z-position of
the part coordinate system must be identically zero
in the machine coordinate system. This is the ground
plane assumption. (2) Model features for matching
must be linear and, furthermore, must correspond
to sensed features perceivable by standard edge de-
tection algorithms. This constrains the model to be
planar polygonal.

Computing Constraints: What (if any) are the

operating system requirements of the algorithm?
Mathematica runs on UNIX, MacOS, Windows,
Windows 95, MS DOS, Windows NT. What com-
puter language is the source code written in?
Mathematica™, |s the source code available? No
{for research only). Are there any system architec-
ture requirements for using the algorithm? No. What
kind of computing hardware is required by the al-
gorithm? Any hardware running UNIX, Macintosh,
EBM-PC-compatibles. How much RAM memory and
disc space is needed? About 8 megabytes RAM for

Component Specifications for Robotics Integration 257

Mac or PC. File size is about 2 megabytes. Are there
any constraints on the numerical precision of the pro-
cessing system? The computing system must allow
computation that is precise to at least 24 decimal dig-
its. This unusually high precision is due to the sensi-
tivity of the fourth order polynomial (Eq. (6)). Fora
certain data set, in the presence of little or no noise,
the correct solution to Eq. {6) has been found to be on
the order of 1072!, which would be detected as effec-
tively zero on computing systems with less precision,

Internal Data Representation: If there is some

knowledge internal to the algorithm (i.e., not input/
output data) to be represented, what is the format
of the representation? The object is represented in
terms of the parameters for lines (not line segments)
for each of the edges on the planar polygonal part.

Speed: How fast does the algorithm run, based on ac-

tual examples run on specific computers? Not mea-
sured at this time,

Complexity: What are the relations defining compu-

tational complexity of the algorithm {there may be
more than one such relation) as functions of the in-
put variables? With N equal to the number of input
line matches, the algorithm complexity is roughly
335+ 153N time intervals. What assumptions were
made in this complexity analysis? We assume that
square roots, divides, adds, and muliiplies are
roughly equivalent in time complexity. These times
can be significantly dependent on the type of com-
puting architecture employed. Decision steps were
counted as 10 time intervals and there were two of
them: (1) determining which of the four solutions to
the quartic (Eq. (6) are real and (2) determining the
optimal (4, q;) that minimizes (Eq. (7)}.

Benchmarks: If there is a standard test suite (a set

of benchmarks} for algorithms performing the same
type of tasks, what is that benchmark and how does
the algorithm perform against standard test suite?
No. Are there optimal algorithms that can produce
the ideal output? No. How is optimality defined for
each optimal algorithm? N/A,

Robustness: How does the algorithm perform in the

presence of large perturbations (replacement noise)
on & subset of its data values? It is not designed
to perform successfully with replacement noise nor
has it been tested under such noise. How does
the aigorithm perform as replacement noise varies
throughout its range, e.g., does performance de-
grade smoothly or catastrophically? N/A. Is the al-
gerithm able to perform well (or at all) if the input is

258

Messina et al.

outside of the specified region? N/A. State all mod-
els that exist for replacement noise. None

Noise: How does the algorithm performin the presence

of small perturbations on all data values? Experi-
mentation has been done in the presence of noise on
synthetic model data, acuboid of size 3 x 2 x 1.2 m.
The synthetic object was placed about 22.m from
the center of the camera. The image size was
(512 x 512) pixels. Small perturbations in trans-
lation were introduced to each ideal image line seg-
ment along its normal direction. Small perturba-
tions in orientation were introduced by rotating each
ideal image line segment with respect to its midpoint.
The magnitudes of the perturbations, r and e, of the
translation and rotation, respectively, were assumed
to be uniformly distributed over {7, T] pixels and
[—€2, ©2]. Monte Carlo simulations were conducted
to discover the propagation of error. Tables 1 and 2
report these results. Uncertainty in these error mea-
surements is not available. How does the algorithm
perform as this type of noise varies throughout its
range, e.g., does performance degrade smoothly or
catastrophically? The degradation is roughly linear
for the error in all dimensions as can be seen from
Tables 1 and 2. State all models that exist for this type

of noise. At each error level, 200 Monte Carlo sim-
ulations were done, absolute error between the ideal
value of the parameter and the noisy output value was
computed, and all 200 error values were averaged.

Convergence: |sthe algorithm iterative or closed form?

Closed form. If iterative, under what (if any) condi-
tions is convergence guaranteed? N/A. If iterative,
does the algorithm converge to the global solution?
N/A

Errors: What is the error criterion, e.g., least squares?

Using definitions in Eqgs.(1)—(5), the task is to solve
the overconstrained equation Aq, +Bq,=C for
{(x, y, @, k). This is a non-linear least squares prob-
lem. The least squares solution is found by minimiz-
ing the squared residual |Aq, + Bq, — C}|* subject
to the trigonometric constraint || q; |> = 1. Thisis ac-
complished by introducing a Lagrange multiplier, A,
and minimizing the following function with respect
toq,. q;.and A,

£(qi, g2,) = |Aqy +Bg, — CIF + A(lqul* = 1).

What input errors and/or internal errors does the al-
gorithm detect? None. What does it do if such errors

Table 1. Propagation of error: Image feature translation exror versus pose and scale error
(direction error fixed at three degrees, number of line matches fixed at ten).

Number of pixels

(translation error) 2 4 6 8 10 12 14 16

Pose error 008 0.16 024 032 040 048 0.56 (.64
(x only) in meters

Pose error 0.04 0.09 0.14 0.19 024 029 034 039
{v only} in meters

Pose error 0.5 0.54 0.58 0.62 066 0.7 074 078
(only) in degrees

Scale error 003 0045 006 0075 009 0105 013 Q.145

Tuble 2. Propagation of error: Image feature direction error versus pose and scale
error (translation error fixed at three pixels, number of line matches fixed at ten).

Number of degrees

(direction error) 2 4 6 8 10 12 14 16

Pase error 008 016 024 032 040 (48 056 064
{x only) in meters

Pose error 004 009 014 019 024 029 034 039
(v only) in meters

Pose error 0.1 04 0.7 1.0 13 1.6 1.9 22
(only) in degrees

Scale error 003 004 005 006 007 008 009 010

are detected? N/A Are there error recovery proce-
dures? No.

Reliability: If the algorithm is available as source
code, a library, or embedded in a system, how re-
liable is it? Not known. Are there known bugs?
No. What reliability tests has the algorithm passed?
None. Has there been testing by some sort of cover-
age tool, which keeps track of which code is executed
in a given session? No.

Testing and Analysis: What experiments have been
done with the algorithm? Experimentation has been
done in the presence of noise on synthetic model
data, a cuboid of size 3 x 2 x 1.2 m. The synthetic
object was placed about 22 m from the center of
the camera. Image size was (512 x 512) pixels. If
input data is varied over a set of variables, what cri-
teria are chosen to sample the space of variables in
order 10 generate sample input data? Small pertur-
bations in translation and direction were introduced
as described earlier. Was Monte Carlo testing done?
Monte Carlo simulations were conducted to dis-
cover the propagation of error. Tables 1 and 2 report
these results. Are there simulators available to gen-
erate input data? Yes, but only for the Mathematica
code,

What kinds of analysis have been done on the re-
sults? Propagation of error analysis using Monte
Carlo simulations of small perturbations on the
sensed input lines. What kinds of graphs and tables
have been produced and what is their format? See
Tables 1 and 2. What statistical methods have been
used? Simple arithmetic mean on ali the errors as
shown in Tables 1 and 2.

Application Experience: How widely has the algo-
rithm been used? Not known. What is the reported
experience with the algorithm? None.

Upstream and Downstream Requirements: What
kinds of components or algorithms are typically ex-
ecuted prior to or subsequent to this algorithm?
Matching algorithms are typically upstream. Are the
representations chosen for the input and output data
consistent with the expected or typical upstream and
downstream algorithms? The expected upstream al-
gorithm is one matching a sensed feature to model
feature and, since the Tan algorithm requires input
line matches for edges on a planar polygonal object,
the matching algorithm must produce line matches as
well. However, if only point or line segment matches
are available from the matching algorithm, line pa-
rameters can easily be generated from themn. Does

Component Specifications for Robotics Integration 259

anything in the algorithm constrain the upstream or
downstream algorithms that must be used? Line
matches (or matches from which line matches can
be easily derived) must be presented to the algorithm.
Surface or curve matches are not acceptable.

Parallelizability: Can the algorithm be parallelized?
Some minor aspects of the algorithm can be par-
allelized. Has it been? No. How does parallelizing
affect performance? Very little.

Modularizability: Can subcomponents of the aigo-
rithm be modularized? Yes. Have they been? Yes.
How does modularization affect performance?
Slows.

Nature of Interaction: How does the component or
algorithm interact with other algorithms and sys-
tems? In Mathematica™, it is a simple func-
tion call. In order for Mathematica to exchange
data with other software and systems, Mathemat-
ica’s MathLink™ communications protocol must be
used.

Coding Style: How is the code written, e.g., in func-
tional, procedural, recursive, or object-oriented
style? Mathematica code is functional, procedural,
and interpreted.

Compliance to Standards: Which (if any) interface or
data standards (published or de facto) are used and
complied with? None.

3.3. Step 3: Formal Language Instantiation
of the Specification

In order to study unambiguous, semantically-rich re-
presentations of components, a goal of this research
was to use a formal information modeling language
to record information about particular components in
the specification categories. However, the goal of the
research was not to find the best formal language for
the representation of components. We have chosen the
EXPRESS language to conduct a feasibility study on
formally representing the components. EXPRESS was
developed as an information modeling language and is
part of the ISO standard 10303, also known as Standard
for the Exchange of Product Model Data (STEP) (ISO,
1994a). The authors examined formal languages, such
as Z (Diller, 1997), for modeling components. Al-
though Z and other similar languages provide sufficient
richness for expressing the component specifications,
they do not provide some easily-used capabilities of
EXPRESS. Team members were also already familiar
with EXPRESS.

260 Messina et al.

The EXPRESS language proved to be adequate for
representing the generic and instantiated component
specifications. Using the generic model of the compo-
nent family in EXPRESS, particular components may
be defined in STEP Part 2] exchange files (ISO, 1994b).
Part 21 files can be used in conjunction with available
tools to read them intoc computer programs or to gene-
rate them automatically. STEP Part 21 files are difficult
to read by humans unfamiliar with their syntax. We de-
veloped a computer-aided software engineering tool
to aid in the definition of the part pose estimation

(=) #1 Funclionaiity_Frame

dp i, obe

specifications. The tool, named FFProbe, was built
using a NIST-developed Data Probe (Morris, 1993}
system, which allows users to build an interactive
graphical system for dealing with instances of data that
correspond to a particular EXPRESS schema. Using
FF-Probe, users can create or edit instances of compo-
nent specifications in a readable format, save collec-
tions of instances in a STEP Part 21 file, read in collec-
tions of instances from STEP Part 21 files, and examine
the models in a readable way on a computer screen, The
name FFProbe refers to “functionality frames,” which

type Infarmation

Commants: [

analysis_of _results [#2

Referanceabla. Yerbiage

application_experience [#3

Referenceable_Verbiage

benchnarks [

SET [0:7] OF Test _Description

complexity [*4

Conplexity_Measure

convergerce (47

Convergence_Statement

data_structures [(%9)

LIST [0:?7]1 of Data_Structurs

error_handling [#12
input_data [{)

Refarenceable_Verbiage
LIST [0:71 of To_Item

input_data_constraints [{2}

LIST [0:7] of Multipls_Data_Constraint

input_paraneters ({2

LIST [037) of Lo Item

LIST [0:7] of Multiple_Data_Constraint

input_parameter_constraints ({
internals @1

Internals Statement.

VK]
krnown. ougs [#15
d

Rafarencaable, Varbiage

nethod_of _use

Use_Statenent

name o

Identifier

Calls

]
S
niche [#18
roise_handling [#19

Refearenceable_Verbiage

output_data [{

LIST £0:7] of Io.ltem

parallalizability W-_—_ Referarceabla_Verblage
SaGs E trbs part pose i al_Lirnes
robustness [¥21 Rafarenceable Verbiage
spmed MZ22 Refaranceable_VYerbiasge
test_descripticns [JLIST L0:7} of Test_Description

¥PE Several lLines = String

=

Figure 2. FFProbe functionality frame window.

0 © ® 0 & 0 2O

dp_ftptobe “

() #23 Functionality_Frame_Sat

type Information

Comments: [

additional_information [#24
authors [(#20, #26)

compiled_available [(.SUN_SOLARIS.)

Infornation_Statement
LIST £1:7] of Person
LIST [0:?] of Computer_0Os

constraints ()

SET [0:7?] GF Constraint

data_acouisition [H28

Refarencaable Verbiasge

24 N —
expcutable_availabie [({, SUN SOLARIS .Y LIST [Q:7] of Computer_Os

interface_components |{812

SET [1:7] OF Functionality_Frame

name art pose seb

Tdentifier

set_intent [#27

Referenceable_Verbliags

source,_lamguage RNSILC

Computer _Languags

source_available [I
standards_used [#29

BOOLERN
Referenceable_Yerbiage

Figure 3. FFProbe functionality frame set window.

0 © O 0O & ®

Component Specifications for Robotics Integration 261

DATA;

#3=REFERENCEABLE_VERBIAGE((’nona’});
#4<COMPLEXITY MEASURE(#5, #6);

#7=CONVERGENCE_STATEMENT(#8, .T.);

#13=INTERNALS_STATEMENT((), #14,());

#16=USE_STATEMENT(#17, .CALL.);

#18=CALLS((), ());:

I" IP);

’l. JJ);

ENDSEC;

#1=FUNCTIONALITY_.FRAME(#2, #3, (), #4, #7,(#9), #12,

. O, (O, OO, #13, #15, #16, ‘pose estimator’, #18,

#19,(), #20, 'finds part pose’, #21, #22, ());
#2=REFERENCEABLE_VERBIAGE(('uses Monte Carlc’, ’error tablss tabulated'});

#5=REFERENCEABLE_VERBIAGE{(’crder log N'));
#6=REFERENCEABLE_VERBIAGE({(’quite efficisnt'));

#8=REFERENCEABLE_VERBIAGE((’fast convergence’));
#9=DATA_STRUCTURE('points!,#11, #10, .T.);
#10=REFERENCEABLE_VERBIAGE{('double points[20];°))};
#11=REFERENCEAELE_VERBIAGE((’array of twenty doubles’));
#12=REFERENCEABLE_VERBIAGE((’aborts on error’));

#14«REFERENCEABLE.VERBIAGE{ (’internals not available’));
#15=REFERENCEABLE.VERBIAGE(('no known bugs'));

#17=REFERENCEABLE_VERBIAGE((’used by functien call’));

#19=REFERENCEABLE_VERBIAGE((’chokes on noFigure 1 - zooise'));
#20=-REFERENCEABLE.VERBIAGE({’must be sequential’));
#21=REFERENCEABLE_VERBIAGE({'very robust’));
#22=REFERENCEABLE_VERBIAGE((’20 seconds on SPARC for 300 points’));
#23=FUNCTIONALITY.FRAME SET{#24, (#25, #26), (.SUN.SOLARIS.), (), #28,
(.SUN_SOLARIS.), (#1), ’'part pose set’, #27, .ANSI.C., .T., #20);
#24=INFORMATION_STATEMENT((), (#25, #28), ());
#25=PERSON('Jones’, 'Pete’, 'USA’, ’800-123-4567°, ’'petefuw.edu’,

#26=PERSON('Nimble', 'Jack’, 'USA®, ’B00-123-4568’, ’jack@uw.edu’,
#27=REFERENCEABLE.VERBIAGE((’find part pose?));

#28=REFERENCEABLE.VERBIAGE{(’camera pizels’));
#29=REFERENCEABLE_VERBIAGE({’written in ANSI C’));

Figure 4. Data section of file written by FFProbe.

is another term used to describe component specifica-
tion instantiations.

Figure 2 shows a window displayed by the FFProbe
for editing a functionality frame. The window has
been filled in with data for a fictitious part pose
estimator, in order to present a more compact example.
The EXPRESS model for the generic specifications de-
scribed in section 3.1 was 15 pages long. The names
of the attributes are shown on the left, the data types
on the right, and the data values in the middle. Most of
the data values are references (such as #2) to other data
instances. The names and data types of the attributes

are taken from the EXPRESS schema for the specifi-
cation. Figure 3 shows a FFProbe window for editing
a functionality frame set, also filled in with fictitious
data. All the referenced data instances of Figs. 2 and
3 are shown in Fig. 4, which is the data section of the
STEP Part 21 file written by the FFProbe after all the
required data needed to complete the example was en-
tered. In Fig. 4, data types which are strings appear
between single quotes, data types that are lists appear
inside parentheses, and data types that are EXPRESS
entity instances appear as references of the form #n.
The functionality frame shown in Fig. 2 is item #1 in

262 Messina et al.

Fig. 4. The functionality frame set shown in Fig. 3 is
item #23 in Fig. 4.

Once functionality frame data has been put into
STEP Part 21 files, readily available software tools au-
tomatically generate C++ code for accessing the data.
These access functions could be used in a computer
program for searching a database of software compo-
nent specifications. Database systems already exist that
enable some forms of searching automatically, given an
EXPRESS schema and data conforming to the schema.

4. Future Work

We are performing further validation of the compo-
nent specifications for part pose estimation algorithms.
Otherresearchers at NIST, who are developing and test-
ing new part pose estimation algorithms, will use our
component specification framework. This will verify
the approach and categories we have selected and will
expand the library of available part pose components
for which we have specifications. Since our approach
relies on framework-dependent specifications, we are
investigating formal specification languages that go
beyond a single component. We are starting to ex-
periment with Rapide, an Architectural Description
Language developed at Stanford University (Luckham
etal., 1995). Architectural Description Languages rig-
orously describe the design of software systems and are
intended to facilitate better understanding of software
architectures and facilitate reuse. Within this context,
we are going to formally describe the RCS architec-
ture and specify its constituent nodes in a generic
fashion. Specific instantiations of the nodes or their
internal modules (BG, WM, SP, VI} will be created
for particular example applications. We will study the
categorization of component and algorithm families
that are relevant to robotics and intelligent systems.
The resulting, formally-defined framework will allow
researchers to experiment with the sharing and reusabi-
lity of intelligent control components.

5. Conclusions

We have examined the feasibility of expressing a soft-
ware component’s specifications in three stages: the
generic specification categories for the family of
components, the natural language instantiations for
particular components within that family, and the for-
mal language instantiations for the components. Our
results indicate that this is a viable approach to facilitate

the communication the relevant facets of a component
to potential users. Given agreed-upon, common tem-
plates for specific component categories, this approach
can be adopted by the robotics research community for
exchanging algorithms and software. Having a com-
mon set of domain-specific functional categories, it is
possible to generate major component families that can
be shared. It is not essential that the research commu-
nity adopt formal representations for their components.
Since researchers in the same field tend to have a com-
mon vocabulary and terminology already, the natural
language versions should be an adequate and necessary
first step for publication and retrieval of components.
Agthe specification categories are exercised and refined
through use, formalization may become appropriate to
consider. At that time, it will be possible to consider
tools that relieve users of the burden of viewing the for-
mal specifications. Internet-based component search,
matching, retrieval, simulation, and composition will
eventually be possible. The initial step—agreeing upon
component families and specification categories for
robotics—has to be taken first.

References

Albus, J. 1996, An engineering architecture for intelligent systems, In
Proceedings of the American Association for Artificial Intelligence
(AAAI), Fall Symposium Series.

Albus, 1.S. 1997, 4-D/RCS: A reference model architecture demo 111,
Technical Report NIST Technical Note 5994, U.S. Department of
Commerce, National Institute of Standards and Technology, NIST,
Gaithersburg, MD 20899.

Bailo, C., Alderson, G., and Yen, C. 1994, Requirements of open,
modular, architecture controllers for applications in the antomo-
tive industry, white paper. Available on the Wide World Web
hitp:/fwww.areweb.com/omac/Documentsfomacv 1 1 .htm.

Baresi, L., Orso, A., and Pezze, M. 1997 Introducing formal speci-
fication methods in industrial practice. In Proceedings of the 1997
International Conference on Software Engineering, pp. 56-66,

Basili, V. and Abd-El-Hafiz, S. 1992, Packaging reusable com-
ponents: The specification of programs, Technical Report
CS-TR-29537, UMIACS-TR-92-97, Department of Computer Sci-
ence, University of Maryland.

Batory, D. and G"Malley, S. 1992. The design and implementation
of hierarchical software systems with reusable components. ACM
Transactions on Saftware Engineering Methodology, 1(4):355—
398.

Bemers-Lee, T. and Connolly, D. 1993. Hypertext markup language:
A representation of textual information and metainformation for
retrieval and interchange, Technical Report, CERN and Atrium
Technology Inc.

Brockschmidt, K. 1995, Inside OLE, 2nd edition, Microsoft Press:
Redmond, WA.

Chappell, D. 1996. Understanding ActiveX and OLE—A Guide for
Developers and Managers. Microsoft Press: Redmond, WA,

Chen, Y. and Cheng, B. 1997. Formally specifying and ana-
lyzing architectural and functional properties of components
for reuse. In WISRS, the 8th Workshop on Software Reuse.
http:/fwww.umcs.maine.edu/ftp/wisr/wisr8/papers.html.

Dementhen, D. and Davis, L. 1995. Model-based object pose in 25
lines of code. fnternational Journal of Computer Vision, 15:123—
141,

Demeyer, S.. Meijler, T., Nierstrasz, O., and Steyaert, P. 1997, De-
sign guidelines for “tailorable’ frameworks. Communications of
the ACM, 40(10).

Denning, A. 1997. ActiveX Controls Inside Our. Microsoft Press:
Redmond, WA,

Diller, A. 1997. Z: An Introduction te Formal Methods, 2nd edition,
John Wiley & Sons: New York, NY.

Fayad, M. and Schmid¢, D.C. 1997. Object-oriented application
frameworks—Introduction. Communications of the ACM, 40(10):
32-38.

Haralick, R.M. 1992. Performance characterization in computer
vision. In Proceedings of the 3rd British Machine Vision Con-
ference.

Haralick, R.M. et al. 1989. Pose estimation from corresponding point
data. In Machire Vision for Inspection and Measurement.

Herman, M. and Albus, J. 1988, Overview of the multiple au-
tonomous underwater vehicles (MAUV) project. In IEEE Interna-
tional Conference on Robotics and Automation, Philadelphia, PA.

Huang, H. 1996. An architecture and a methodology for intelligent
control. [EEE Expert, 11(2}.

Huttenlocher, ILP, and Ullman, 8. 1990. Recognizing solid objects
by alignment with an image. International Journal of Computer
Vision, 5(2):195-212.

[EEE 1994. IEEE Std 1076-1993: IEEE standard VHDL language
reference manual, IEEE Standards.

ISO 1994a. Industrial automation systems and integration, product
data representation and exchange—part 1 1. EXPRESS Language
Reference Manual. International Organization for Standardiza-
tion.

ISO 1994b. Industrial autcmation systems and integration, Product
data representation and exchange—part 21: Clear text enceding of
the exchange structure, International Organization for Standard-
ization.

JavaSeft 1998. Products and APls, See Web URL: hup://
wWWW.java.sun.com/products.

Kara, D. 1997. Secing the forest for the trees. Software Magazine.

Kazman, R., Clements, P., Bass, L., and Abouwd, G. 1997, Clas-
sifying architectural elements as a foundation for mechanism
matching. In Proceedings of the 1997 2 Ist Annual International
Computer Software and Applications Conference.

Krueger, C. 1992. Software Reuse. ACM Computing Surveys, 24(2).

Liskov, B. and Wing, J. 1993, Specifications and their use in defining
subtypes. In Proceedings of the 8th Annual Conference an Object-
Oriented Programming Systems, Languages, and Applications,
pp. 16-28.

Luckham, D.C., Kenney, J.J., Augustin, L .M., Vera, J., Bryan, D.,
and Mann, W. 1995. Specification and analysis of system archi-
tecture using rapide. IEEFE Transactions on Software Engineering,
21(4):336-355.

McCool, R, 1994. The common gateway interface. NCSA, 1.1
edition.

Maorris, K. 1993. Data probe: A tool for EXPRESS-based Data.
In Proceedings of the 7th Annual Engineering Database

Component Specifications for Robotics Integration

263

Sympaosium—ASME Computers in Engineering Conference.

Murphy, K., Juberts, M., Legowik, 5., Nashman, M., Schneiderman,
H., Scott, H., and Szabo, 5. 1993. Ground vehicle control at NIST:
From teleoperation to autonomy. In Proceedings of the 7th An-
nual Space Operations, Applications, and Research Symposium,
Houston, TX.

Murphy, K., Norcross, R., and Proctor, F. 1988. CAD directed robotic
deburring. In Proceedings of the Second International Symposium
on Robotics and Manufucturing Research, Education, and Appli-
cations, Albugquerque, NM,

Musser, D.R. and Saini, A. 1996. STL Tutorial and Reference Guide,
Addison Wesley: Reading, MA.,

Nauer, P. and Randel, E.B. 1968. Sofiware Engineering: Report on
u Conference by the NATO Science Committee, NATQ Scientific
Affairs Division: Brussels, Belgium.

Nierstrasz, O., Gibbs, 8., and Tsichritzis, D. 1992. Component-
oriented software development. Communications of the ACM,
35(9).

Nierstrasz, O. and Meijler, T. 1995. Research directions in software
composition, ACM Computing Surveys, 27(2).

OMAC AP Workgroup 1997. OMAC API Set. Open Modular
Architecture Controls {OMAC) User Group. See Web URL:
hitp:/fisd.cme_ nist.gov/info/omacapi.

OMG 1996. Description of the New OMA Reference Model, Draft 1.
OMG Document ab/96-05-02. Object Management Group,
Framingham, MA. http:/fwww.omg.org.

OMG 1997. The common object request broker: Architecture
and specification. Object Management Group Formal Docu-
ment 97-02-25. Object Management Group, Framingham, MA.
http://www.omg.org.

OSACA 1998. Open system architecture for controls within automa-
tion systems. See Web URL: http://www.osaca.org.

Paredis, C., Brown, B., and Khosla, P. 1997, A rapidly deployable
manipulator system. Rebotics and Autonomous Systems, 21:289—
304.

Piccinocchi, S., Ceccarelli, M., Piloni, F, and Bicchi, A, 1997. In-
teractive benchmark for planning algorithms on the web, In Pro-
ceedings of the 1997 IEEE International Conference on Robotics
and Automation,

Podgurski, A. and Pierce, L. 1993. Retrieving reusable software by
sampling behavior. ACM Transactions an Software Engineering
and Methodology, 2(3):286-303.

Postel, J. (Ed.). 1981. Transmission control protocol—DARPA in-
ternet program protocol specification. RFC 793,

Pree, W. 1997, Component-based software development—A new
paradigm in software engineering? Saffware-Concepts und Tools,
18:169-174.

Rogerson, D.
WA,

Short, K. 1997, Component based development and ebject modeling.
Sec Web URL: hitp://www.cool.sterling/cbd/whitepaper.

SML Corporation 1998. Open system environment for controller
(OSEC) architecture overview. Published on the Wide World Web
http:/fwww.sml.co.jp/fOSEC.

Steenstrup, M., Arbib, M_A., and Manes, E.G. 1983. Port antomata
and the algebra of concurrent processes. Journal of Computer and
Svstem Sciences, 27(1):29-50.

Stewart, D., Volpe, R., and Khosla, P. 1997. Design of dynamically
reconfigurable real-time software using port-based objects. IEEE
Transactions on Software Engineering, 23(12):169-174.

1997. Inside COM, Microsoft Press: Redmond,

264 Messina et al.

Stouffer, K. and Russell, R. 1995, ADACS—An advanced debur-
ring and chamfering system. In Proceedings of the 6th Interna-
tional Conference on Manufacturing Engineering, Melboumne,
Australia.

Szyperski, C. 1998. Component Software: Bevond Object-Oriented
Programming. Addison Wesley Longman Limited: Essex,
England.

Tan, T.. Sullivan, G., and Baker, K. 1992. Linear algorithms for ob-
ject pose estimation, In Proceedings of the 3rd British Machine
Vision Conference.

Tan, T., Sullivan, G., and Baker, K. 1994, Pose determination and
recognition of vehicles in traffic scenes. In European Conference
on Computer Vision.

Tan, T., Sullivan, G.. and Baker, K. 1996, Pose determination and
recognition of vehicles in traffic scenes. Paffern Recognition,
29(3):449-461.

Zaremski, A. and Wing, J. 1996. Specification matching of soft-
ware components. ACM Transactions on Software Engineering
and Methodology, 6(4):449-461.

Flena Messina is Leader of the Knowledge Systems Group in the In-
tefligent Systems Division at the National Institute of Standards and
Technology. Her research interests include world modeling, knowl-
edge representation, and software engineering methodologies for de-
veloping intelligent systems. Prior to joining NIST, she worked in
robotics at Cincinnati Milacron and in Computer-Aided Design and
Manufacturing at the Structural Dynamics Research Corporation.
She received a B.S. in Engineering Science from the University of
Cincinnati in 1980.

John Horst has been with the Intelligent Systems Division of the
National Institute of Standards and Technology since 1988, He has
B.A., BSEE. and MSEE from the University of Maryland, College
Park. His current areas of interest are control systems, computer vi-
sion, and component-based design for manufacturing systems. He is
currently pursuing a Ph,D, in Electrical Engineering at the University
of Maryland.

Thomas Kramer has been a Guest Researcher at NIST and a Re-
search Associate of the Catholic University of America since 1984.
He received a B.A. in physics from Swarthmore College in 1965,
followed by twa years in the Peace Corps. He received his Ph.D.
in mathematics from Duke University in 1971, after which he was
a science and technology bureaucrat for 13 years, His research in-
terests include automated reasoning, feature-based manufacturing,
other aspects of automated manufacturing, and formal languages.

Hui-Min Huang is currently a mechanical engineer with the
National Institute of Standards and Technology (NIST), U.S.
Department of Commerce. His major research areas include the
architectures and software engineeting methodologies for real-time,
intelligent conirol systems. His prior professional experiences
include technical positions with the Singer Company Link Simula-
tion Division (Silver Spring, MD} and the Timex Watches Company
(Taiwan). Mr. Huang received an M.S. degree in Mechanical En-
gineering from the University of Texas at Arlington in 1982 and an
M.S. degree in Computer Science from the Johns Hopkins University
in 1986.

John Michaleski has been a computer scientist at NIST for over
15 years. His research deals with open-architecture contrellers,
advanced robotics, and automation technology for manufacturing
systems. He earned his M.S. in computer science from the Georgia
Institute of Technology, and his B.S. in mathematics from the Uni-
versity of Maryland.

